REACTION OF PHENACYLTRIPHENYLARSONIUM BROMIDE WITH AROMATIC PRIMARY AMINES: SYNTHESIS OF 2-ARYLINDOLES AND 2-ARYLBENZINDOLES THROUGH ARSENIC YLIDE *

R.K. BANSAL ${ }^{\star}$ and S.K. SHARMA
Department of Chemistry, University of Rajasthan, Jaipur-302004 (India)
(Received October 18th, 1977)

Summary

The reaction of phenacyltriphenylarsonium bromide with aromatic primary amines provides a good method for the synthesis of 2-arylindoles and 2-arylbenzindoles through arsenic ylide, and a range of indole and benzindole derivatives have been prepared in good yield.

Introduction

Arsenic ylides have attracted much attention because of their wide applications in synthetic organic chemistry. They have been successfully used in the synthesis of, e.g. olefins [1], cyclopropanes [1,2], isoxazolines [3], pyrones [4], aziridines [2], and a number of other heterocyclics [5]. Studies have been carried out comparing the properties and synthetic utility of arsenic ylides with those of the analogous ylides of other hetero-atoms. Hirose et al. [6] carried out the reaction of N-phenacylpyridinium bromide with anilines which led to the formation of 2-phenylindoles. Junjappa [7] extended this reaction to dimethylphenacylsulphonium bromide and prepared several 2 -phenylindoles. In these reactions, formation of an ylide intermediate was suggested. As arsenic ylides resemble sulphur ylides in many respects, we studied the reaction of phenacyltriphenylarsonium bromide with a few anilines and reported the synthesis of several 2-phenylindoles in preliminary communication [8]. In contrast to the suggestion by Junjappa [7], our results [8] indicated that the nucleophilic addition of the aniline to the carbonyl group of the salt precedes the formation of the ylide. The latter subsequently undergoes cyclization to furnish the indole.

We now report our full results of the reaction of phenacyl (or substituted

[^0]TABLE 1, PHYBICAL CONSTANTS AND ANALYSES FOR THE 2-ARYLINDOLES AND 2-ARYLBENZINDOLES PREPARED

Compound	X	R1	R^{2}	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Yield (\%)	Molocular formulae	Analyais (Found (calcd.) (\%))			$\begin{aligned} & \text { IR (cm-1) } \\ & \nu(\mathrm{N}-\mathrm{H}) \\ & (\mathrm{KBr})^{l} \end{aligned}$	PMR ($8, \mathrm{ppm}$)
							c	H	N		
H14,	H	H	H	187 ${ }^{\text {a }}$	88	$\mathrm{C}_{14 \mathrm{H}^{1 / 2} \mathrm{~N}}$	$\begin{gathered} 86,82 \\ (87,01) \end{gathered}$	$\begin{gathered} 5.66 \\ (8.74) \end{gathered}$	$\begin{gathered} 7,02 \\ 170 \mathrm{OK} \end{gathered}$	3405	$\begin{aligned} & 8,8, b(N \cdot H) \\ & 6.9 \mathrm{~B}, \mathrm{~d}(3 \mathrm{H}) \end{aligned}$
IIfb	H	CH_{3}	H	$117{ }^{6}$	63	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}$	$\begin{gathered} 86,80 \\ (86,92) \end{gathered}$	$\begin{gathered} 6,30 \\ (0,32) \end{gathered}$	$\begin{gathered} 6,26 \\ (6,76) \end{gathered}$	3450	$\begin{aligned} & 8,2, b(N \cdot H) \\ & 6,9, d(8 \cdot H) \end{aligned}$
IIIc	H	H	CH_{3}	$132{ }^{\text {c }}$	b9	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}$	$\begin{gathered} 86,02 \\ (86,92) \end{gathered}$	$\begin{gathered} 6,24 \\ (0,32) \end{gathered}$	$\begin{gathered} 6,42 \\ (6.76) \end{gathered}$	3460	$\begin{aligned} & 8,2, b(N-H) \\ & 6, B S, d(8-H) \end{aligned}$
IIld	H	H	Cl	192-194 ${ }^{\text {d }}$	51	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NCl}$	$\begin{gathered} 79.84 \\ (79,85) \end{gathered}$	$\begin{gathered} 4,38 \\ (4,43) \end{gathered}$	$\begin{gathered} 6.02 \\ (6,15) \end{gathered}$	3410	$\begin{aligned} & \text { 2.4. } \mathrm{s}\left(\mathrm{CH}_{3}\right) \\ & 7.4, \mathrm{~b}(\mathrm{~N}-\mathrm{H}) \\ & 6.4, \mathrm{~d}(8-\mathrm{H}) \end{aligned}$
Ille	H	NO_{2}	H	80	70	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 70.54 \\ (70.58) \end{gathered}$	$\begin{aligned} & 4,22 \\ & (4,29) \end{aligned}$	$\begin{gathered} 11.26 \\ (11.76) \end{gathered}$	$\begin{aligned} & 3800 \\ & \text { (unassoclated) } \\ & 3380 \\ & \text { (associated) } \end{aligned}$	$\begin{aligned} & 7 . B_{1} q(N-H) \\ & 6,3, d(3-H) \end{aligned}$
IIIf	H	II	NO_{2}	$198{ }^{\circ}$	72	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 70.56 \\ (70,58) \end{gathered}$	$\begin{gathered} 4,16 \\ (4,23) \end{gathered}$	$\begin{aligned} & 11.04 \\ & (11.76) \end{aligned}$	3440	$\begin{aligned} & 7.3, \mathrm{~b}(\mathrm{~N} \cdot \mathrm{H}) \\ & 6,4, \mathrm{~d}(\mathrm{~g} \cdot \mathrm{H}) \end{aligned}$
dils	H	Cl	H	112	B6	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NCl}$	$\begin{gathered} 73 ; 82 \\ (73,85) \end{gathered}$	$\begin{aligned} & 4,36 \\ & (4,48) \end{aligned}$	$\begin{gathered} 6,12 \\ (6,15) \end{gathered}$	3440	$\begin{aligned} & 7.4, b(N-H) \\ & 6.4, d(9-H) \end{aligned}$
IIth	$m \cdot \mathrm{NO}_{2}$	H	H	172 f	52	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 70,56 \\ (70.58) \end{gathered}$	$\begin{gathered} 4,18 \\ (4,29) \end{gathered}$	$\begin{gathered} 11.63 \\ (11.76) \end{gathered}$	3375	$\begin{aligned} & 8.8 ; \mathrm{b}(\mathrm{~N} \cdot \mathrm{H}) \\ & 6.9 \mathrm{D}, \mathrm{~d}(\mathrm{P}-\mathrm{H}) \end{aligned}$
IIII	$m \cdot \mathrm{NO}_{2}$	H	Cl	176	60	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	$\begin{gathered} 61,62 \\ (61,62) \end{gathered}$	$\begin{gathered} 3,30 \\ (3,30) \end{gathered}$	$\begin{gathered} 10.20 \\ (10.28) \end{gathered}$	3380	$\begin{aligned} & 7.4 ; b(N-H) \\ & 6.4, d(3 \cdot H) \end{aligned}$
IIIJ	$m \cdot \mathrm{NO}_{2}$	H	NO_{2}	180	73	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$	$\begin{gathered} 59,32 \\ (50,37) \end{gathered}$	$\begin{gathered} 3.26 \\ (3,28) \end{gathered}$	$\begin{gathered} 14.71 \\ (14.84) \end{gathered}$	3380	$\begin{aligned} & 7.4, b(\mathrm{~N}-\mathrm{H}) \\ & 6.35, \mathrm{~d}(9 \cdot \mathrm{H}) \end{aligned}$
Hilk	m. NO_{2}	H	OCH_{3}	148	61	$\mathrm{C}_{15} \mathrm{H}_{1} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\begin{gathered} 67,15 \\ (67,16) \end{gathered}$	$\begin{aligned} & 4,47 \\ & (4,51) \end{aligned}$	$\begin{gathered} 10.42 \\ (10.44) \end{gathered}$	3360	$\begin{aligned} & \text { B.3, b(N-H) } \\ & \text { 6.0, } \mathrm{d}(8-\mathrm{H}) \end{aligned}$
1111	$\mathrm{m} \cdot \mathrm{NO}_{2}$	NO_{2}	H	101	70	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$	$\begin{gathered} 69,30 \\ (58,37) \end{gathered}$	$\begin{aligned} & 3,25 \\ & (3,28) \end{aligned}$	$\begin{aligned} & 14.72 \\ & (14.84) \end{aligned}$	3605 (unassociated) 3380 (assoclated)	$\begin{aligned} & 7,6, \mathrm{o}(\mathrm{~N} \cdot \mathrm{H}) \\ & 6,8, \mathrm{~d}(8 \cdot \mathrm{H}) \end{aligned}$

IIIm	$m \cdot \mathrm{NO}_{2}$. Cl	H	114	58	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	$\begin{gathered} 61.62 \\ (61.02) \end{gathered}$	$\begin{gathered} 3.30 \\ (3.30) \end{gathered}$	$\begin{gathered} 10.28 \\ (10.28) \end{gathered}$	3385	$\begin{aligned} & 8.2, \mathrm{~b}(\mathrm{~N} \cdot \mathrm{H}) \\ & 6.8 \mathrm{~d}, \mathrm{~d}(3-\mathrm{H}) \end{aligned}$
IIIn	- $-\mathrm{CH}_{3}$	H	H	219^{8}	63	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}$	$\begin{gathered} 86.04 \\ (86.02) \end{gathered}$	6.25	6.71	3450	8.2, b(N-H)
								(6.32)	(6.76)		6.9, d(3.H)
											2,4, $8\left(\mathrm{CH}_{3}\right)$
IIIO	p. CH_{3}	H	Cl	184	66	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NCl}$	74.82(74.63)	4.81	8.72	3440	8.3, b(N-H)
								(5.00)	(5.78)		6.05, $\mathrm{d}(3-\mathrm{H})$
											2.6, $\mathrm{s}\left(\mathrm{CH}_{3}\right)$
IIIp	p. CH_{3}	H	NO_{2}	214	69	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	71.40	4,75	11.00	3410	8.25, b (N-H)
							(71.42)	(4.79)	(11.10)		6.85, d(3-H)
											2.4, $8\left(\mathrm{CH}_{3}\right)$
IIIq	p. CH_{3}	C	H	124	52	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NCl}$	$\begin{gathered} 74.49 \\ (74.53) \end{gathered}$	4.94	5.76	3400	$8.3, \mathrm{~b}(\mathrm{~N} \cdot \mathrm{H})$
								(5,00)	(5.79)		$6.96, \mathrm{~d}(8-\mathrm{H})$
											2.5, $\mathrm{B}\left(\mathrm{CH}_{3}\right)$
IIIr	p. CH_{3}	H	CH_{3}	142	56	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}$	86.10	7.15	6.66	3410	8.15 , $\mathrm{b}(\mathrm{N} \cdot \mathrm{H})$
							(86.12)	(7.18)	(6.70)		6.85, d(3-H)
											$2.4,8\left(\mathrm{CH}_{3}\right)$
Va	H	-	-	$164{ }^{\text {h }}$	65	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}$	88.81	5.22	5.70	3410	8.05, $\mathrm{G}(\mathrm{N} \cdot \mathrm{H})$
							(88.86)	(5.39)	(5.76)		$6.55, \mathrm{~d}(3-\mathrm{H})$
Vb	$\mathrm{m} \cdot \mathrm{NO}_{2}$	-	-	186	53	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	74.98	4,18	6.72	3395	8.2, $\mathrm{q}(\mathrm{N}-\mathrm{H})$
							(74.99)	(4.20)	(6.88)		6.6, d(3.H)
Vc	p. CH_{3}	-	-	$178{ }^{i}$	68	$\mathrm{Cl}_{19} \mathrm{H}_{15} \mathrm{~N}$	88.70	5.79	5.38	3450	7.9, 9 ($\mathrm{N}-\mathrm{H})$
							(88.88)	(5.88)	(5,44)		6.65, d(3-H)
											2.3, $\mathrm{s}\left(\mathrm{CH}_{3}\right)$
VIla	H	-	-	132	61	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}$	88.85	5,20	5.72	3405	7.87, $\mathrm{q}(\mathrm{N}-\mathrm{H})$
							(88.86)	(5.39)	(5.76)		6.65, d(1-H)
Virb	$m \cdot \mathrm{NO}_{2}$	-	-	217	60	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	74.08	4,16	6.70	3385	7.8. q ($\mathrm{N}-\mathrm{H}$)
							(74.99)	(4,20)	(6.88)		6.7, d(1-H)
VIIc	p-CH3	-	\cdots	168^{k}	55	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}$	$8 \mathrm{B.72}$	6.81	5.41	3440	$8.15, \mathrm{q}(\mathrm{N}-\mathrm{H})$
							(88.68)	(5.88)	(5.44)		6.75, d(1-H)
											2.15, $\mathrm{s}\left(\mathrm{CH}_{3}\right)$

 $180^{\circ} \mathrm{C} .{ }^{\prime}$ Lit. [16] $133^{\circ} \mathrm{C} .{ }^{\prime \prime}$ Lit. [17] $173^{\circ} \mathrm{C} .{ }^{\prime} \mathrm{b}=$ broad peak; $\mathrm{d}=$ doublet; $\mathrm{q}=$ quartet $\mathrm{s}=$ singlet.
phenacyl) triphenylarsonium bromide with anilines, leading to the formation of 2-arylindoles. Reactions with naphthylamines have also been carried out, and give 2-arylbenzindoles.

Results and discussion

Treating phenacyl (or substituted phenacyl) triphenylarsonium bromide (Ia-c) with various substituted anilines (II) in refluxing N, N-dimethylaniline gave corresponding 2 -arylindoles (IIIa-IIIr) (eq. 1).

Similar reaction of the arsonium salt (Ia-Ic) with 1-naphthylamine (IV) afforded the corresponding 2-aryl-1H-benz[g]indole (Va-Vc) (eq. 2).

(Ia-c)

(IV)

($\bar{Z} a-c$)
The reaction of the arsonium salt Ia-Ic with 2-naphthylamine (VI) was also studied. In this case during cyclization the proton could be lost from either the 1 - or the 3 -position, leading to 2 -aryl-3H-benz [e]indole and 2 -aryl- $1 H$-benz[f] indole, but 2 -aryl-3H-benz[e]indole was the sole product. This is in accordance with the fact that α-proton is more labile than β-proton in naphthylamine (eq. 3).

All the products were characterized on the basis of the elemental analysis, colour test, IR and PMR spectra. All the indoles gave a dark red or violet colour with p-(dimethylamino)benzaldehyde and perchloric acid in alcoholic solution,
a characteristic test for the indoles having 3-position unsubstituted [9]. The benzindole derivatives, however, did not give any colour. In IR spectra a sharp peak was usually found in the region $3505-3360 \mathrm{~cm}^{-1}$ which is attributed to N-H stretching frequency [10]. In PMR spectra either a broad unresolved peak or a pair of doublets is observed in the region $\delta 7.4-8.3 \mathrm{ppm}$ which corresponds to the $\mathrm{N}-\mathrm{H}$ proton. A doublet centred at $\delta 6.3-7.0 \mathrm{ppm}$ is attributable to $3-\mathrm{H}$ proton of 2 -arylindoles and 2 -aryl-1 H -benz[g]indole and 1-H proton of 2-aryl$3 H$-benz [e] indole [11].

In this connection mention may be made of 7 -nitro-2-phenylindole (IIIe) and 7-nitro-2-(m-nitrophenyl)indole (IIII), which exhibit some unusual properties. The melting points of these compounds (Table 1) are unusually low. In IR, two peaks are observed at 3505 and $3480 \mathrm{~cm}^{-1}$. In PMR spectrum also two sharp peaks of almost equal intensity appear at $\delta 7.65$ and 7.5 ppm . All these facts can easily be explained on the basis of intramolecular hydrogen bonding.

Physical data for the 2 -arylindoles (IIIa-r) and 2-arylbenzindoles ($\mathrm{Va}-\mathrm{Vc}$, VIIa-VIIc) are summarized in Table 1.

Experimental

Melting points are uncorrected. The compounds were purifiied by recrystallization from an appropriate solvent and their purities checked by thin layer chromatography on silica gel G (solvent, benzene/ethylacetate $1 / 1$; spray reagent 2% ceric sulphate in $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$). The IR spectra were recorded on Perkin-Elmer 337 grating IR spectrophotometer in KBr pellet. The PMR spectra were run on Perkin-Elmer RB-12 spectrometer using tetramethylsilane as an internal standard. The spectra of the compounds containing methyl group were recorded in CDCl_{3} while the other spectra were determined in $\mathrm{Me}_{2} \mathrm{CO}$.

All the amines were purified either by distillation or by recrystallization. The N, N-dimethylamiline (B.D.H.), used in the reactions was distilled before use. The arsonium salts were prepared by the method of Johnson et al. [18] as given below.

Preparation of phenacyl (or substituted phenacyl)triphenylarsonium bromide. A mixture of triphenylarsine (20 mmol) and phenacylbromide (or substituted phenacyl bromide) (22 mmol) was refluxed in dry benzene (30 ml) for 4 h . The precipitate of the phenacyltriphenylarsonium bromide was filtered off, washed with benzene, and dried.

Phenacyltriphenylarsonium bromide (Ia), m.p. 183- $184^{\circ} \mathrm{C}$ (lit. [18] $185^{\circ} \mathrm{C}$), $\nu(\mathrm{CO})(\mathrm{KBr}) 1660 \mathrm{~cm}^{-1}$; (m-nitrophenacyl)triphenylarsonium bromide (Ib), m.p. $196^{\circ} \mathrm{C}, \nu(\mathrm{CO})(\mathrm{KBr}) 1670 \mathrm{~cm}^{-1}$; (p-methylphenacyl)triphenylarsonium bromide (Ic), m.p. $165^{\circ} \mathrm{C}, \nu(\mathrm{CO})(\mathrm{KBr}) 1660 \mathrm{~cm}^{-1}$.

Reaction of arsonium salt with aromatic primary amine. The following procedure was used throughout. A mixture of arsonium salt (10 mmol) and aromatic primary amine (30 mmol) was refluxed in $50 \mathrm{ml} N, N$-dimethylaniline for 4 h . The mixture was cooled, neutralized with $20 \% \mathrm{HCl}$, and extracted with ether. The ether extract was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give the crude product, which was crystallized from an appropriate solvent to yield the indole.

Acknowledgements

We are indebted to Prof R.C. Mehrotra without whose generous encourage ment this work would not have been possible. Thanks are also due to Prof. K.C Joshi for helpful suggestions, and the University authorities for providing necessary facilities. One of us (S.K.S.) acknowledges financial assitance from U.G.C., New Delhi.

References

1 P.S. Kenduxiar and R.S. Tewari, J. Organometal. Chem., 60 (1973) 247.
2 S. Trippett and M.A. Walker, J. Chem. Soc. C., (1971) 1114.
3 P. Braio, G. Gaudiano and C. Ticozzi, Gass, Chim. Ital., 102 (1972) 395; Chem. Abstr., 77 (1972) 164577).
4. Gosney and D. Lloyd, Tetrahedron. 29 (1973) 1697.

5 G. Gaudiano, C. Ticozzi, A. Umani-Ronchi and A. Selva, Chim. Ind. (Milan), 49 (1967) 1343; Chem. Abstr., 69 (1968) $2941 f$.
6 H. Hirose, S. Tagaki and T. Uno. Yakugaku Zasshi, 81 (1961) 1353.
7 H. Junjappa, Synthesis, 12 (1975) 798.
8 R.K. Bansal and S.K. Sharma, Tetrahedron. Lett., (1977) 1923.
9 A. Treibs and E. Hermann, Chem. Abstr., 50 (1956) 943.
10 R.M. Silverstein, C.G. Bassler and T.C. Morril, Spectrometric identification of Organic Compounds, Jokn Wiley \& Sons, Inc., New York, 1977.p. 117.
11 R.A. Heacock, O. Hutzinger. B.D. Scott, J.w. Daly and B. Witkop. J. Amer. Chem. Soc., 85 (1963) 1825.

12 R.L. Shriner. W.C. Ashley and E. Weich, Ong. Synth., 22 (1942) 98.
13 W.E. Noband, K.R. Rush and L.R. Smith. J. Ors. Chem.. 31 (1966; 65.
14 A. Calvadre and R. Pallaud, C.R. Acad. Sci. Paris, 250 (1960) 3194.
15 C.E. Bhdes ard A.E. Wilds, J. Org. Chem., 21 (1956) 1013.
16 H.P. Patel and J.M. Tedder, J. Chem. Soc., (1963) 4593.
17 C.L. Kulkmi. J.G. Hiripakkanaver and S. Siddappa, J. Kamatak Univ.. 12 (1967) 61.
18 A.W. Johnson and H. Schubert, J. Ort. Chem., 35 (1910) 2678.

[^0]: * Preliminary communication, see ref. 8.

